Characterisations and examples of graph classes with bounded expansion

نویسندگان

  • Jaroslav Nesetril
  • Patrice Ossona de Mendez
  • David R. Wood
چکیده

Classes with bounded expansion, which generalise classes that exclude a topological minor, have recently been introduced by Nešetřil and Ossona de Mendez. These classes are defined by the fact that the maximum average degree of a shallow minor of a graph in the class is bounded by a function of the depth of the shallow minor. Several linear-time algorithms are known for bounded expansion classes (such as subgraph isomorphism testing), and they allow restricted homomorphism dualities, amongst other desirable properties. In this paper we establish two new characterisations of bounded expansion classes, one in terms of so-called topological parameters, the other in terms of controlling dense parts. The latter characterisation is then used to show that the notion of bounded expansion is compatible with Erdös-Rényi model of random graphs with constant average degree. In particular, we prove that for every fixed d > 0, there exists a class with bounded expansion, such that a random graph of order n and edge probability d/n asymptotically almost surely belongs to the class. We then present several new examples of classes with bounded expansion that do not exclude some topological minor, and appear naturally in the context of graph drawing or graph colouring. In particular, we prove that the following classes have bounded expansion: graphs that can be drawn in the plane with a bounded number of crossings per edge, graphs with bounded stack number, graphs with bounded queue number, and graphs with bounded non-repetitive chromatic number. We also prove that graphs with ‘linear’ crossing number are contained in a topologically-closed class, while graphs with bounded crossing number are contained in a minor-closed class. 1991 Mathematics Subject Classification. 05C62 (graph representations), 05C15 (graph coloring), 05C83 (graph minors).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterisations of Nowhere Dense Graphs

Nowhere dense classes of graphs were introduced by Nešetřil and Ossona de Mendez as a model for “sparsity” in graphs. It turns out that nowhere dense classes of graphs can be characterised in many different ways and have been shown to be equivalent to other concepts studied in areas such as (finite) model theory. Therefore, the concept of nowhere density seems to capture a natural property of g...

متن کامل

Characterising Bounded Expansion by Neighbourhood Complexity

We show that a graph class G has bounded expansion if and only if it has bounded r-neighbourhood complexity, i.e. for any vertex set X of any subgraph H of G ∈ G, the number of subsets of X which are exact r-neighbourhoods of vertices of H on X is linear to the size of X. This is established by bounding the r-neighbourhood complexity of a graph in terms of both its r-centred colouring number an...

متن کامل

First order properties on nowhere dense structures

A set A of vertices of a graph G is called d-scattered in G if no two d-neighborhoods of (distinct) vertices of A intersect. In other words, A is d-scattered if no two distinct vertices of A have distance at most 2d. This notion was isolated in the context of finite model theory by Gurevich and recently it played a prominent role in the study of homomorphism preservation theorems for special cl...

متن کامل

Open problems from Workshop on Kernels

Treedepth-d modulator as a parameter Somnath Sikdar The recent kernelization algorithms in very general sparse graph classes such as graphs of bounded expansion use the structural parameter of a constant-treedepth modulator [1]. The parameter seems natural in these graph classes, but we have not yet investigated its full power also in general graphs. What natural problems admit a polynomial ker...

متن کامل

Structural Properties and Constant Factor-Approximation of Strong Distance-r Dominating Sets in Sparse Directed Graphs

Bounded expansion and nowhere dense graph classes, introduced by Nešetřil and Ossona de Mendez [26, 27], form a large variety of classes of uniformly sparse graphs which includes the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs. Since their initial definition it was shown that these graph classes can be defined in many equivalent ways: by gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012